Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
conda create --name access_data_analysis python=3
conda activate access_data_analysis
conda install r-essentials r-base r-argparse r-ggpubr r-ggthemes r-plotly r-kableextra r-htmlwidgets r-dt
pip install genotype-variants> Rscript R/compile_reads.R -m $PATH/TO/master_file.csv -o $PATH/TO/results_folder> Rscript R/filter_calls.R -m $PATH/TO/master_file.csv -o $PATH/TO/results_folder> Rscript R/SV_incorporation.R -m $PATH/TO/manifest_file.tsv -o $PATH/TO/results_folder> Rscript R/CNA_processing.R -m $PATH/TO/manifest_file.tsv -o $PATH/TO/results_folder> Rscript R/plot_all_events.R -m $PATH/TO/manifest_file.tsv -o $PATH/TO/results_folder> Rscript ~/github/access_data_analysis/reports/create_report.R -md -t ~/github/access_data_analysis/reports/template_days.Rmd -p C-L6H8E2 -r ../results_20Jan2023/results_stringent_hc/C-L6H8E2_SNV_table.csv -tt "Melanoma" -m ../manifest_noDate_days.tsv -o C-L6H8E2_days.html -rc ../results_20Jan2023/CNA_final_call_set -d P-0022907 -ds P-0022907-T01-IM6 -dm /juno/work/ccs/shared/resources/impact/facets/all/P-00229/P-0022907-T01-IM6_P-0022907-N01-IM6/default/P-0022907-T01-IM6_P-0022907-N01-IM6.ccf.mafswimmer_single_treatment.Rswimmer_multi_treatment.Rdates2days.RRscript swimmer_single_treatment.R -i input_data.txt -o output_plot.pdf -t daysRscript swimmer_multi_treatment.R -m metadata.xlsx -o /path/to/output -c blue,red,green -t weeksRscript dates2days.R -i input_data.txt -o output_data.txtinstall.packages(c("dplyr", "ggplot2", "lubridate", "argparse", "readr", "readxl", "tidyr", "scales", "gridExtra", "cowplot"))Rscript dates2days.R -i input_data.txt -o processed_data.txtRscript swimmer_single_treatment.R -i processed_data.txt -o single_treatment_plot.pdf -t daysRscript swimmer_multi_treatment.R -m metadata.xlsx -o /path/to/output -c blue,red,green -t weeksinstall.packages(c("ggplot2", "gridExtra", "tidyr", "dplyr", "sqldf", "RSQLite", "readr", "argparse", "plotly", "htmlwidgets", "purrr"))Rscript vaf_overview_plot.R -o /path/to/output -v /path/to/variants.maf -c /path/to/clinical.tsv -y mean -n 10ACCESS Data Analysis
Hugo_Symbol,Chromosome,Start_Position,End_Position,Tumor_Sample_Barcode,Variant_Classification,HGVSp_Short,Reference_Allele,Tumor_Seq_Allele2,D_t_alt_count_fragmentRscript R/SV_incorporation.R -h
usage: R/SV_incorporation.R [-h] [-m MASTERREF] [-o RESULTSDIR] [-dmp DMPDIR]
[-c CRITERIA]
optional arguments:
-h, --help show this help message and exit
-m MASTERREF, --masterref MASTERREF
File path to master reference file
-o RESULTSDIR, --resultsdir RESULTSDIR
Output directory
-dmp DMPDIR, --dmpdir DMPDIR
Directory of clinical DMP IMPACT repository [default]
-genes GENELIST, --genelist GENELIST
File path to genes covered by ACCESS [default]
-c CRITERIA, --criteria CRITERIA
Calling criteria [default]Intermediate files are generated in a internal structure
.s
+-- C-000001
| +-- C-000001_all_unique_calls.maf
| +-- C-000001_impact_calls.maf
| +-- C-000001_sample_sheet.tsv
| +-- C-000001_genotype_metadata.tsv
#plasma sample mafs
| +-- C-000001-L001-d-SIMPLEX_genotyped.maf
| +-- C-000001-L001-d-DUPLEX_genotyped.maf
| +-- C-000001-L001-d-SIMPLEX-DUPLEX_genotyped.maf
| +-- C-000001-L001-d-ORG-SIMPLEX-DUPLEX_genotyped.maf
| +-- C-000001-L002-d-SIMPLEX_genotyped.maf
| +-- C-000001-L002-d-DUPLEX_genotyped.maf
| +-- C-000001-L002-d-SIMPLEX-DUPLEX_genotyped.maf
| +-- C-000001-L002-d-ORG-SIMPLEX-DUPLEX_genotyped.maf
| +-- ...
#buffy coats
| +-- C-000001-N001-d-STANDARD_genotyped.maf
| +-- C-000001-N001-d-ORG-STD_genotyped.maf
| +-- ...
#DMP samples
| +-- P-1000000-T01-IM6-STANDARD_genotyped.maf
| +-- P-1000000-T01-IM6-ORG-STD_genotyped.maf
| +-- P-1000000-N01-IM6-STANDARD_genotyped.maf
| +-- P-1000000-N01-IM6-ORG-STD_genotyped.maf
| +-- ...
+-- C-000002
| +-- C-000002_all_unique_calls.maf
| +-- C-000002_impact_calls.maf
| +-- C-000002_sample_sheet.tsv
| +-- C-000002_genotype_metadata.tsv
#plasma sample mafs
| +-- C-000002-L001-d-SIMPLEX_genotyped.maf
| +-- C-000002-L001-d-DUPLEX_genotyped.maf
| +-- C-000002-L001-d-SIMPLEX-DUPLEX_genotyped.maf
| +-- C-000002-L001-d-ORG-SIMPLEX-DUPLEX_genotyped.maf
| +-- C-000002-L002-d-SIMPLEX_genotyped.maf
| +-- C-000002-L002-d-DUPLEX_genotyped.maf
| +-- C-000002-L002-d-SIMPLEX-DUPLEX_genotyped.maf
| +-- C-000002-L002-d-ORG-SIMPLEX-DUPLEX_genotyped.maf
| +-- ...
#buffy coats
| +-- C-000002-N001-d-STANDARD_genotyped.maf
| +-- C-000002-N001-d-ORG-STD_genotyped.maf
| +-- ...
#DMP samples
| +-- P-2000000-T01-IM6-STANDARD_genotyped.maf
| +-- P-2000000-T01-IM6-ORG-STD_genotyped.maf
| +-- P-2000000-N01-IM6-STANDARD_genotyped.maf
| +-- P-2000000-N01-IM6-ORG-STD_genotyped.maf
| +-- ...
+-- ... (other patient directories)
+-- pooled
| +-- all_all_unique.maf
| +-- pooled_metadata.tsv
#donor samples
| +-- DONOR1-STANDARD_genotyped.maf
| +-- DONOR1-ORG-STD_genotyped.maf
| +-- DONOR2-STANDARD_genotyped.maf
| +-- DONOR2-ORG-STD_genotyped.maf
| +-- ...
+-- results_stringent
| +-- C-000001_SNV_table.csv
| +-- C-000002_SNV_table.csv
| +-- ...
+-- results_stringent_combined
| +-- C-000001_table.csv
| +-- C-000002_table.csv
| +-- ...
+-- CNA_final_call_set
| +-- C-000001_cna_final_call_set.txt
| +-- C-000002_cna_final_call_set.txt
| +-- ...
+-- plots
| +-- C-000001_all_events.pdf
| +-- C-000002_all_events.pdf
| +-- ...Rscript R/CNA_processing.R -h
usage: R/CNA_processing.R [-h] [-m MASTERREF] [-o RESULTSDIR] [-dmp DMPDIR]
optional arguments:
-h, --help show this help message and exit
-m MASTERREF, --masterref MASTERREF
File path to master reference file
-o RESULTSDIR, --resultsdir RESULTSDIR
Output directory
-dmp DMPDIR, --dmpdir DMPDIR
Directory of clinical DMP IMPACT repository [default]Convert output of Rscript (filter_calls.R) CSV file to MAF
python get_cbioportal_variants.py subset-maf --sid "Test1" --sid "Test2" --sid "Test3"python get_cbioportal_variants.py subset-maf --ids /path/to/ids.txtUsage: get_cbioportal_variants.py [OPTIONS] COMMAND [ARGS]...
Options:
--install-completion Install completion for the current shell.
--show-completion Show completion for the current shell, to copy it or
customize the installation.
--help Show this message and exit.
Commands:
subset-cna Subset data_CNA.txt file for given set of sample ids.
subset-cpt Subset data_clinical_patient.txt file for given set of
patient...
subset-cst Subset data_clinical_samples.txt file for given set of sample...
subset-maf Subset MAF/TSV file and mark if an alteration is covered by...
subset-sv Subset data_sv.txt file for given set of sample ids.Usage: get_cbioportal_variants.py subset-cpt [OPTIONS]
Subset data_clinical_patient.txt file for given set of patient ids.
Tool to do the following operations: A. Get subset of clinical information
for samples based on PATIENT_ID in data_clinical_patient.txt file
Requirement: pandas; typing; typer; bed_lookup(https://github.com/msk-
access/python_bed_lookup)
Options:
-p, --cpt FILE Clinical Patient file generated by cBioportal repo
[default: /work/access/production/resources/cbioportal/cur
rent/msk_solid_heme/data_clinical_patient.txt]
-i, --ids PATH List of ids to search for in the 'PATIENT_ID' column.
Header of this file is 'sample_id' [default: ]
--sid TEXT Identifiers to search for in the 'PATIENT_ID' column. Can
be given multiple times [default: ]
-n, --name TEXT Name of the output file [default:
output_clinical_patient.txt]
-c, --cname TEXT Name of the column header to be used for sub-setting
[default: PATIENT_ID]
--help Show this message and exit.Usage: get_cbioportal_variants.py subset-cst [OPTIONS]
Subset data_clinical_samples.txt file for given set of sample ids.
Tool to do the following operations: A. Get subset of clinical information
for samples based on SAMPLE_ID in data_clinical_sample.txt file
Requirement: pandas; typing; typer; bed_lookup(https://github.com/msk-
access/python_bed_lookup)
Options:
-s, --cst FILE Clinical Sample file generated by cBioportal repo
[default: /work/access/production/resources/cbioportal/cur
rent/msk_solid_heme/data_clinical_sample.txt]
-i, --ids PATH List of ids to search for in the 'SAMPLE_ID' column.
Header of this file is 'sample_id' [default: ]
--sid TEXT Identifiers to search for in the 'SAMPLE_ID' column. Can
be given multiple times [default: ]
-n, --name TEXT Name of the output file [default:
output_clinical_samples.txt]
-c, --cname TEXT Name of the column header to be used for sub-setting
[default: SAMPLE_ID]
--help Show this message and exit.Usage: get_cbioportal_variants.py subset-cna [OPTIONS]
Subset data_CNA.txt file for given set of sample ids.
Tool to do the following operations: A. Get subset of samples based on
column header in data_CNA.txt file
Requirement: pandas; typing; typer; bed_lookup(https://github.com/msk-
access/python_bed_lookup)
Options:
-c, --cna FILE Copy Number Variant file generated by cBioportal repo
[default: /work/access/production/resources/cbioportal/curr
ent/msk_solid_heme/data_CNA.txt]
-i, --ids PATH List of ids to search for in the 'header' of the file.
Header of this file is 'sample_id' [default: ]
--sid TEXT Identifiers to search for in the 'header' of the file. Can
be given multiple times [default: ]
-n, --name TEXT Name of the output file [default: output_CNA.txt]
--help Show this message and exit.Usage: get_cbioportal_variants.py subset-sv [OPTIONS]
Subset data_sv.txt file for given set of sample ids.
Tool to do the following operations: A. Get subset of structural variants
based on Sample_ID in data_sv.txt file
Requirement: pandas; typing; typer; bed_lookup(https://github.com/msk-
access/python_bed_lookup)
Options:
-s, --sv FILE Structural Variant file generated by cBioportal repo
[default: /work/access/production/resources/cbioportal/cur
rent/msk_solid_heme/data_sv.txt]
-i, --ids PATH List of ids to search for in the 'Sample_ID' column.
Header of this file is 'sample_id' [default: ]
--sid TEXT Identifiers to search for in the 'Sample_ID' column. Can
be given multiple times [default: ]
-n, --name TEXT Name of the output file [default: output_sv.txt]
-c, --cname TEXT Name of the column header to be used for sub-setting
[default: Sample_ID]
--help Show this message and exit.Usage: get_cbioportal_variants.py subset-maf [OPTIONS]
Subset MAF/TSV file and mark if an alteration is covered by BED file or
not
Tool to do the following operations: A. Get subset of variants based on
Tumor_Sample_Barcode in data_mutations_extended.txt file B. Mark the
variants as overlapping with BED file as covered [yes/no], by appending
"covered" column to the subset MAF
Requirement: pandas; typing; typer; bed_lookup(https://github.com/msk-
access/python_bed_lookup)
Options:
-m, --maf FILE MAF file generated by cBioportal repo [default: /work/acc
ess/production/resources/cbioportal/current/msk_solid_heme
/data_mutations_extended.txt]
-i, --ids PATH List of ids to search for in the 'Tumor_Sample_Barcode'
column. Header of this file is 'sample_id' [default: ]
--sid TEXT Identifiers to search for in the 'Tumor_Sample_Barcode'
column. Can be given multiple times [default: ]
-b, --bed FILE BED file to find overlapping variants [default:
/work/access/production/resources/msk-
access/current/regions_of_interest/current/MSK-
ACCESS-v1_0-probe-A.sorted.bed]
-n, --name TEXT Name of the output file [default: output.maf]
-c, --cname TEXT Name of the column header to be used for sub-setting
[default: Tumor_Sample_Barcode]
--help Show this message and exit.def read_tsv(tsv)def read_ids(sid, ids)def filter_by_columns(sid, tsv_df)def filter_by_rows(sid, tsv_df, col_name)def read_bed(bed)def check_if_covered(bedObj, mafObj)def get_row(tsv_file)Rscript R/compile_reads.R -h
usage: R/compile_reads.R [-h] [-m MASTERREF] [-o RESULTSDIR]
[-pb POOLEDBAMDIR] [-fa FASTAPATH]
[-gt GENOTYPERPATH] [-dmp DMPDIR] [-mb MIRRORBAMDIR]
[-dmpk DMPKEYPATH]
optional arguments:
-h, --help show this help message and exit
-m MASTERREF, --masterref MASTERREF
File path to master reference file
-o RESULTSDIR, --resultsdir RESULTSDIR
Output directory
-pb POOLEDBAMDIR, --pooledbamdir POOLEDBAMDIR
Directory for all pooled bams [default]
-fa FASTAPATH, --fastapath FASTAPATH
Reference fasta path [default]
-gt GENOTYPERPATH, --genotyperpath GENOTYPERPATH
Genotyper executable path [default]
-dmp DMPDIR, --dmpdir DMPDIR
Directory of clinical DMP IMPACT repository [default]
-mb MIRRORBAMDIR, --mirrorbamdir MIRRORBAMDIR
Mirror BAM file directory [default]
-dmpk DMPKEYPATH, --dmpkeypath DMPKEYPATH
DMP mirror BAM key file [default]Rscript R/compile_reads_all.R -h
usage: R/compile_reads_all.R [-h] [-m MASTERREF] [-o RESULTSDIR]
[-pid PROJECTID] [-pb POOLEDBAMDIR]
[-fa FASTAPATH] [-gt GENOTYPERPATH] [-dmp DMPDIR]
[-mb MIRRORBAMDIR] [-mab MIRRORACCESSBAMDIR]
[-dmpk DMPKEYPATH] [-dmpak DMPACCESSKEYPATH]
optional arguments:
-h, --help show this help message and exit
-m MASTERREF, --masterref MASTERREF
File path to master reference file
-o RESULTSDIR, --resultsdir RESULTSDIR
Output directory
-pid PROJECTID, --projectid PROJECTID
Project ID for submitted jobs involved in this run
-pb POOLEDBAMDIR, --pooledbamdir POOLEDBAMDIR
Directory for all pooled bams [default]
-fa FASTAPATH, --fastapath FASTAPATH
Reference fasta path [default]
-gt GENOTYPERPATH, --genotyperpath GENOTYPERPATH
Genotyper executable path [default]
-dmp DMPDIR, --dmpdir DMPDIR
Directory of clinical DMP repository [default]
-mb MIRRORBAMDIR, --mirrorbamdir MIRRORBAMDIR
Mirror BAM file directory [default]
-mab MIRRORACCESSBAMDIR, --mirroraccessbamdir MIRRORACCESSBAMDIR
Mirror BAM file directory for MSK-ACCESS [default]
-dmpk DMPKEYPATH, --dmpkeypath DMPKEYPATH
DMP mirror BAM key file [default]
-dmpak DMPACCESSKEYPATH, --dmpaccesskeypath DMPACCESSKEYPATH
DMP mirror BAM key file for MSK-ACCESS [default]Rscript reports/create_report.R -h
usage: reports/create_report.R [-h] -t TEMPLATE -p PATIENT_ID -r RESULTS -rc
CNA_RESULTS_DIR -tt TUMOR_TYPE -m METADATA
[-d DMP_ID] [-ds DMP_SAMPLE_ID] [-dm DMP_MAF]
[-o OUTPUT] [-ca] [-pi]
optional arguments:
-h, --help show this help message and exit
-t TEMPLATE, --template TEMPLATE
Path to Rmarkdown template file.
-p PATIENT_ID, --patient-id PATIENT_ID
Patient ID
-r RESULTS, --results RESULTS
Path to CSV file containing mutation and genotype
results for the patient.
-rc CNA_RESULTS_DIR, --cna-results-dir CNA_RESULTS_DIR
Path to directory containing CNA results for the
patient.
-tt TUMOR_TYPE, --tumor-type TUMOR_TYPE
Tumor type
-m METADATA, --metadata METADATA
Path to file containing meta data for each sample.
Should contain a 'cmo_sample_id_plasma', 'sex', and
'collection_date' columns. Can also optionally include
a 'timepoint' column (e.g. for treatment information).
-d DMP_ID, --dmp-id DMP_ID
DMP patient ID (optional).
-ds DMP_SAMPLE_ID, --dmp-sample-id DMP_SAMPLE_ID
DMP sample ID (optional).
-dm DMP_MAF, --dmp-maf DMP_MAF
Path to DMP MAF file (optional).
-o OUTPUT, --output OUTPUT
Output file
-ca, --combine-access
Don't splite VAF plots by clonality.
-pi, --plot-impact Also plot VAFs from IMPACT samples.Rscript R/filter_calls.R -h
usage: R/filter_calls.R [-h] [-m MASTERREF] [-o RESULTSDIR] [-dmpk DMPKEYPATH]
[-ch CHLIST] [-c CRITERIA]
optional arguments:
-h, --help show this help message and exit
-m MASTERREF, --masterref MASTERREF
File path to master reference file
-o RESULTSDIR, --resultsdir RESULTSDIR
Output directory
-ch CHLIST, --chlist CHLIST
List of signed out CH calls [default]
-c CRITERIA, --criteria CRITERIA
Calling criteria [default]python csv_to_maf.py -i /path/to/Test1.csv -i /path/to/Test2.csv -i /path/to/Test3.csvpython csv_to_maf.py -l /path/to/FileOfFiles.txt> cat FileOfFiles.txt
/path/to/Test1.csv
/path/to/Test2.csv
/path/to/Test3.csvpython csv_to_maf.py -n -i /path/to/Test1.csv -i /path/to/Test2.csv -i /path/to/Test3.csv
# OR
python csv_to_maf.py -n -l /path/to/FileOfFiles.txt> python csv_to_maf.py --help
Usage: csv_to_maf.py [OPTIONS]
Tool does the following operations:
A. Read one or more files from the inputs
B. Removes unwanted columns, modifying the column headers depending on the
requirements
C. Massaging the data frame to make it compatible with MAF format
D. Write the data frame to a file in MAF format and Excel format
Requirement: pandas; openpyxl; typing; typer;
Options:
-l, --list PATH File of files, List of CSV files to be
converted to maf, one per line, no header,
CSV file generated by Rscript filter_calls.R
[default: ]
-i, --csv FILE File to convert from csv to maf. CSV file
generated by Rscript filter_calls.R, Can be
given multiple times [default: ]
-n, --normal / -N, --keep-normal
Keep samples tagged as normal [default:
False]
-p, --prefix TEXT Prefix of the output MAF and EXCEL file
[default: csv_to_maf_output]
--install-completion Install completion for the current shell.
--show-completion Show completion for the current shell, to
copy it or customize the installation.
--help Show this message and exit.This script enables to run the create_report.R script on multiple patients
template_path Path, optional - "Path to the template.Rmd or template_days.Rmd to be used with create_report.R when --repo is not given".template_path pathlib.Path, optional - Path to template RMarkdown file. Defaults to None.sample_idpython convert_dates_to_days.py -i ./example_input.txt -t2 "SCREEN"> python convert_dates_to_days.py --help
Usage: convert_dates_to_days.py [OPTIONS]
Tool to do the following operations: A. Reads meta data file, and based on
the timepoint information given convert them to days for a samples
belonging to a given patient_id B. Supports following date formats:
'MM/DD/YY','M/D/YY','MM/D/YY','M/DD/YY','MM/DD/YYYY','YYYY/MM/DD'
Requirement: pandas; typer; arrow
Options:
-i, --input FILE Input file with the information to convert dates to
days [required]
-t1, --timepoint1 TEXT Column name which has timpoint information to use
the baseline date, first preference [default: C1D1]
-t2, --timepoint2 TEXT Column name which has timpoint information to use
the baseline date, second preference [default: ]
-o, --output TEXT Name of the output file [default: output.txt]
--install-completion Install completion for the current shell.
--show-completion Show completion for the current shell, to copy it or
customize the installation.
--help Show this message and exit.access_data_analysis=>0.1.2 # works with this repo tag
typer==0.3.2
typing_extensions==3.10.0.0
pandas==1.2.5
rich==12.1.0Usage: run_create_report.py [OPTIONS]
Options:
-r, --repo PATH Base path to where the git repository is
located for access_data_analysis
-s, --script PATH Path to the create_report.R script, fall
back if `--repo` is not given
-t, --template PATH Path to the template.Rmd or
template_days.Rmd to be used with
create_report.R when `--repo` is not given
-m, --manifest FILE File containing meta information per sample.
Require following columns in the header:
cmo_patient_id, sample_id, dmp_patient_id,
collection_date or collection_day,
timepoint. If dmp_sample_id column is given
and has information that will be used to run
facets. If dmp_sample_id is not given and
dmp_patient_id is given than it will be used
to get the Tumor sample with lowest number.
If dmp_sample_id or dmp_patient_id is not
given then it will run without the facet maf
file [required]
-v, --variant-results DIRECTORY
Base path for all results of small variants
as generated by filter_calls.R script in
access_data_analysis (Make sure only High
Confidence calls are included) [required]
-c, --cnv-results DIRECTORY Base path for all results of CNV as
generated by CNV_processing.R script in
access_data_analysis [required]
-f, --facet-repo DIRECTORY Base path for all results of facets on
Clinical MSK-IMPACT samples [default: /juno
/work/ccs/shared/resources/impact/facets/all
/]
-bf, --best-fit If this is set to True then we will attempt
to parse `facets_review.manifest` file to
pick the best fit for a given dmp_sample_id
[default: False]
-l, --tumor-type TEXT Tumor type label for the report [required]
-cfm, --copy-facet-maf If this is set to True then we will copy the
facet maf file in the directory specified in
`copy_facet_dir` [default: False]
-cfd, --copy-facet-dir PATH Directory path where the facet maf file
should be copied.
-d, --template-days If the `--repo` option is specified and if
this is set to True then we will use the
template_days RMarkdown file as the template
[default: False]
-gm, --generate-markdown If given, the create_report.R will be run
with `-md` flag to generate markdown
[default: False]
-ff, --force If this is set to True then we will not stop
if an error is encountered in a given sample
while running create_report.R but keep on
running for the next sample [default:
False]
--install-completion Install completion for the current shell.
--show-completion Show completion for the current shell, to
copy it or customize the installation.
--help Show this message and exit.> python python/run_create_report/run_create_report.py \
-m /home/shahr2/bergerlab/Project_10619_D/small_variants/manifest_noDate_days.tsv \
-r /home/shahr2/github/access_data_analysis \
-v /home/shahr2/bergerlab/Project_10619_D/small_variants/results_20Jan2023/results_stringent/ \
-c /home/shahr2/bergerlab/Project_10619_D/small_variants/results_20Jan2023/CNA_final_call_set \
-l "Melanoma" -gm -d -cfm -ff -bf> python python/run_create_report/run_create_report.py \
-m /home/shahr2/bergerlab/Project_10619_D/small_variants/manifest_noDate_days.tsv \
-r /home/shahr2/github/access_data_analysis \
-v /home/shahr2/bergerlab/Project_10619_D/small_variants/results_20Jan2023/results_stringent/ \
-c /home/shahr2/bergerlab/Project_10619_D/small_variants/results_20Jan2023/CNA_final_call_set \
-l "Melanoma" -gm -ffdef check_required_columns(manifest, template_days=None)def generate_repo_path(repo_path=None, script_path=None, template_path=None, template_days=None)def read_manifest(manifest)def get_row(tsv_file)def get_small_variant_csv(patient_id, csv_path)def run_cmd(cmd)def run_multiple_cmd(commands, parallel_process=None)def generate_facet_maf_path(facet_path, patient_id, sample_id=None)def get_maf_path(maf_path, patient_id, sample_id)def get_best_fit_folder(facet_manifest_path)def generate_create_report_cmd(script, markdown, template_file, cmo_patient_id, csv_file, manifest, cnv_path, dmp_patient_id, dmp_sample_id, dmp_facet_maf, tumor_type=None)make-manifestupdate-manifestmake-manifestupdate-manifestpip install pandas typer rich arrow numpy openpyxlpython manifest.py make-manifest -i input_manifest.xlsx -o updated_manifest --remove-collection-date -a XS2python manifest.py update-manifest -i legacy_manifest.xlsx -o updated_legacy_manifestpython manifest.py make-manifest -i input_manifest.xlsx -o updated_manifest --remove-collection-date -a XS2